# A-LEVEL Mathematics 

MFP3 Further Pure 3

Mark scheme

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Key to mark scheme abbreviations

| M | mark is for method |
| :---: | :---: |
| m or dM | mark is dependent on one or more M marks and is for method |
| A | mark is dependent on M or m marks and is for accuracy |
| B | mark is independent of $M$ or m marks and is for method and accuracy |
| E | mark is for explanation |
| Vor ft or F | follow through from previous incorrect result |
| CAO | correct answer only |
| CSO | correct solution only |
| AWFW | anything which falls within |
| AWRT | anything which rounds to |
| ACF | any correct form |
| AG | answer given |
| SC | special case |
| OE | or equivalent |
| A2,1 | 2 or 1 (or 0) accuracy marks |
| $-x \mathrm{EE}$ | deduct $x$ marks for each error |
| NMS | no method shown |
| PI | possibly implied |
| SCA | substantially correct approach |
| c | candidate |
| sf | significant figure(s) |
| dp | decimal place(s) |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q1 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | DO NOT ALLOW ANY MISREADS IN THIS QUESTION |  |  |  |
|  | $y(1.2)=4+0.2 \times \frac{1+2 \sqrt{4}}{1+1}$ | M1 |  | Correct substitution into correct formula PI |
|  | $=4.5$ | A1 | 2 | 4.5 OE |
| (b) | $(y(1.4)=) \quad y(1)+2(0.2)\{f[1.2, y(1.2)]\}$ | M1 |  | Seen or used |
|  | $y(1.4)=4+2(0.2) \times \frac{1.2+2 \sqrt{4.5}}{1.2+1}$ | A1 |  | OE PI by 4.990 or $4.989 \ldots$ |
|  | $\begin{aligned} & (=4+0.4 \times 2.4739 \ldots) \\ & =4.990(\text { to } 3 \mathrm{dp}) \end{aligned}$ | A1 | 3 | CAO Must be 4.990 |
|  | Total |  | 5 |  |
| (b) | Eg Treat $4+2(0.2) \times \frac{1+2 \sqrt{4.5}}{1.2+1}$ as a slip scoring M1 A0 A0 <br> ( $x$ has correctly been explicitly replaced by 1.2 in denominator but not so in the numerator.) If candidate had not shown this form and instead just given $y(1.4)=4.953207 \ldots$. score would be $0 / 3$ |  |  |  |
| (b) | An OE for the $1^{\text {st }} \mathrm{A} 1$ is $4+2(0.2) \times \frac{6+15}{11}$ | $\overline{2}$ |  |  |


| Q2 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a)(ii) | $\begin{aligned} & \mathrm{f}^{\prime \prime}(0)=5-5 \mathrm{f}^{\prime}(0)-6 \mathrm{f}(0)=0 \\ & \mathrm{f}^{\prime \prime \prime}(x)=6 x-5 \mathrm{f}^{\prime \prime}(x)-6 \mathrm{f}^{\prime}(x) \\ & \mathrm{f}^{\prime \prime \prime}(0)=0-5 \mathrm{f}^{\prime \prime}(0)-6 \mathrm{f}^{\prime}(0) \Rightarrow \mathrm{f}^{\prime \prime \prime}(0)=-6 \\ & \mathrm{f}^{(4)}(x)=6-5 \mathrm{f}^{\prime \prime \prime}(x)-6 \mathrm{f}^{\prime \prime}(x) \end{aligned}$ | B1 B1 B1 |  | $f^{\prime \prime}(0)=0$ seen or used <br> AG Be convinced |
|  | $\begin{aligned} & \mathrm{f}^{(4)}(0)=6-5 \mathrm{f}^{\prime \prime \prime}(0)-6 \mathrm{f}^{\prime \prime}(0)=36 \\ & \mathrm{f}(x) \approx x(1)+\frac{x^{2}}{2} \mathrm{f}^{\prime \prime}(0)+\frac{x^{3}}{3!} \mathrm{f}^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} \mathrm{f}^{(4)}(0) . . \end{aligned}$ | B1 M1 | 3 | 36 <br> Maclaurin's Thm used with $\mathrm{f}(0)=0$, $f^{\prime}(0)=1$ and c's non-zero values for at least two of $f^{\prime \prime}(0), f^{\prime \prime \prime}(0)$ or $-6, \mathrm{f}^{(4)}(0)$ leading to three non-zero terms |
|  | $=x-x^{3}+\frac{3}{2} x^{4}$ | A1F | 2 | OE Ft only on c's non-zero value for $\mathrm{f}^{(4)}(0)$. <br> Ignore any extra higher powers of $x$ terms |
| (b) | $\begin{aligned} & \text { Aux eqn } m^{2}+5 m+6=0 \\ & (m+3)(m+2)=0 \\ & \left(y_{C F}=\right) A \mathrm{e}^{-3 x}+B \mathrm{e}^{-2 x} \end{aligned}$ | M1 <br> A1 |  | Correct factorising or correct substitution into quadratic formula OE on correct aux eqn. PI by correct values of ' $m$ ' seen/used. |
|  | Try $\left(y_{P I}=\right) a x^{2}+b x+c$ $\left(y_{P I}^{\prime}=\right) 2 a x+b ; \quad\left(y^{\prime \prime}{ }_{P I}=\right) 2 a$ | M1 |  | Correct form for $y_{P I}$. If other term(s) included, cand needs to show the corresponding coefficient is 0 |
|  | $2 a+5(2 a x+b)+6\left(a x^{2}+b x+c\right)=3 x^{2}+5$ $6 a=3 ; \quad 10 a+6 b=0 ; 2 a+5 b+6 c=5$ | dM1 A1 |  | Substitution into DE, dep on previous $\mathbf{M}$ only. PI by at least two correct equations in next line provided previous M scored. OE At least two correct, seen or used |
|  | $a=\frac{1}{2} ; \quad b=-\frac{5}{6} ; \quad c=\frac{49}{36}$ | A1 |  | Seen or used; at least two correct |
|  | $\left(y_{G S}=\right) A \mathrm{e}^{-3 x}+B \mathrm{e}^{-2 x}+\frac{1}{2} x^{2}-\frac{5}{6} x+\frac{49}{36}$ | A1 | 7 | ACF but must be exact |
|  | Total |  | 12 |  |
| (a)(i) | Condone equivalent notation for the derivatives |  |  |  |

\begin{tabular}{|c|c|c|c|c|}
\hline Q3 \& Solution \& Mark \& Total \& Comment \\
\hline (a)(i) \& \[
\ln (1-\sin x)=-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}
\] \& B1 \& 1 \& \\
\hline (a)(ii) \& \[
\ln (1+\sin x)+\ln (1-\sin x)=\ln \cos ^{2} x
\]
\[
0 x-\frac{2}{2} x^{2}+0 x^{3}-\frac{2}{12} x^{4} \ldots=2 \ln \cos x
\] \& M1 \& \& \begin{tabular}{l}
Must be using 'hence' otherwise \(0 / 3\) \(\ln (1+\sin x)+\ln (1-\sin x)=\ln \cos ^{2} x\) seen or used. \\
\(\ln \cos ^{2} x=2 \ln \cos x\) seen or used equated to the sum of the c's expansions of \(\ln (1+\sin x)\) and \(\ln (1-\sin x)\). Like terms need not be combined for this dM 1 .
\end{tabular} \\
\hline \& \[
\ln \cos x=-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}
\] \& A1 \& 3 \& AG Be convinced. NMS scores \(0 / 3\) \\
\hline \multirow[t]{2}{*}{(a)(iii)} \& \[
\ln (\sec x+\tan x)=\ln \left(\frac{1+\sin x}{\cos x}\right)
\] \& M1 \& \& \[
\ln \left(\frac{1+\sin x}{\cos x}\right)
\] \\
\hline \& \[
\begin{aligned}
\& x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{2} x^{2}+\frac{1}{12} x^{4} \\
\& \ln (\sec x+\tan x)=x+\frac{1}{6} x^{3}
\end{aligned}
\] \& dM1

A1 \& 3 \& $\ln (1+\sin x)-\ln \cos x$ with the two given series used correctly. Condone one miscopy.

$$
x+\frac{1}{6} x^{3} . \quad \text { NMS scores } 3 / 3
$$ <br>

\hline \multirow[t]{3}{*}{Alt (a)(iii)} \& $$
\begin{aligned}
& {[\ln (\sec x+\tan x)]^{\prime}=\sec x} \\
& {[\ln (\sec x+\tan x)]^{\prime \prime}=\sec x \tan x}
\end{aligned}
$$ \& \& \& 3rd derivative of $\ln (\sec x+\tan x)$ <br>

\hline \& $$
\begin{aligned}
& {[\ln (\sec x+\tan x)] } \\
&=\sec ^{3} x+\sec x \tan ^{2} x
\end{aligned}
$$ \& (M1) \& \& 3rd derivative of $\ln (\sec x+\tan x)$ attempted using product or quotient rule with at least $2^{\text {nd }}$ derivative correct <br>

\hline \& $$
\begin{aligned}
& \ln (\sec x+\tan x) \\
& \quad=0+(\sec 0) x+0 x^{2}+k \frac{x^{3}}{3!}, \text { where } \\
& k=\text { c's }[\ln (\sec x+\tan x)]]^{\prime \prime \prime}(0), \quad k \neq 0 \\
& \ln (\sec x+\tan x)=x+\frac{1}{6} x^{3}
\end{aligned}
$$ \& (dM1)

(A1) \& (3) \& $x+\frac{1}{6} x^{3}$ <br>

\hline \multirow[t]{2}{*}{(b)} \& $$
\begin{aligned}
& {\left[\frac{\ln (\sec x+\tan x)}{2 x+5 x^{3}}\right]=\frac{x+\frac{1}{6} x^{3} \ldots}{2 x+5 x^{3}}} \\
& \lim _{x \rightarrow 0}\left[\frac{\ln (\sec x+\tan x)}{2 x+5 x^{3}}\right]
\end{aligned}
$$ \& M1 \& \& Using a series expansion for $\ln (\sec x+\tan x)$ in the given function <br>

\hline \& $$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{1+O\left(x^{2}\right)}{2+O\left(x^{2}\right)} \\
& =\frac{1}{2}
\end{aligned}
$$ \& dM1

A1F \& 3 \& Must see at least one ' $O\left(x^{2}\right)$ ' or $k x^{2}$ term after division by $x$ to get a constant term in both the numerator and the denominator. ft only on c's (a)(iii) $=x+p x^{n}$, integer $n>1$. No other errors seen <br>
\hline \& Total \& \& 10 \& <br>
\hline
\end{tabular}

| Q4 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d} y}{\mathrm{~d} t}$ | M1 |  | OE Relevant chain rule eg $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}$ | A1 |  | OE eg $\frac{\mathrm{d} y}{\mathrm{~d} t}=\mathrm{e}^{t} \frac{\mathrm{~d} y}{\mathrm{~d} x} \quad$ or $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t}$ etc |
|  | $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)$ | M1 |  | OE eg $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} x}{\mathrm{~d} t} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$ |
|  | $\begin{aligned} & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d} t}{\mathrm{~d} x}\left[-\mathrm{e}^{-t} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\mathrm{e}^{-t} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}\right] \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{-2 t}\left[-\frac{\mathrm{d} y}{\mathrm{~d} t}+\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\right] \end{aligned}$ | dM1 |  | Product rule (dep on both previous $\mathbf{M s}$ ) $\begin{aligned} & \text { OE } \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} x}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right) \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} y}{\mathrm{~d} t}+x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \end{aligned}$ |
|  | $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}$ | A1 | 5 | CSO Condone answer left as RHS=LHS |
| (b) | DE becomes $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+5 y=10 \mathrm{e}^{t}$ | B1F |  | Ft on c's integer $n$ value ie $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+(n-3) \frac{\mathrm{d} y}{\mathrm{~d} t}+5 y=10 \mathrm{e}^{t}$ <br> PI by later work |
|  | Auxl eqn $m^{2}-4 m+5=0 ; \quad(m-2)^{2}+1=0$ | M1 |  | $\left(m+\frac{n-3}{2}\right)^{2}+k=0$ or using quadratic formula on $m^{2}+(n-3) m+5=0$. PI by correct ( ft on $n$ ) values of ' $m$ ' seen/used or PI by correct CF. |
|  | $\begin{aligned} & m=2 \pm \mathrm{i} \\ & \text { CF: }\left(y_{C}=\right) \mathrm{e}^{2 t}(A \cos t+B \sin t) \end{aligned}$ | B1F |  | If not correct CF , ft on $m=p \pm \mathrm{i} q$, $p \neq 0, q \neq 0$ and two arbitrary constants in CF . |
|  | P.Int. ( $y_{P}=$ ) $5 \mathrm{e}^{t}$ | B1 |  |  |
|  | $y=x^{2}[A \cos (\ln x)+B \sin (\ln x)]+5 x$ | A1 | 5 | $y=\mathrm{f}(x)$ with correct $\mathrm{f}(x)$ simplified so no exponentials |
|  | Total |  | 10 |  |
| (a) | After the M1A1, cand writes $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)$ and stops, no further marks are scored due to the stated dependency even though the product rule has been used. If however the cand had subsequently replaced the $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)$ by $\frac{\mathrm{d} t}{\mathrm{~d} x} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)$ or better then M1 dM1 would be scored at that stage. |  |  |  |


| Q5 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{align*} & (\mathrm{I}=) \frac{2}{3} \ln x-\frac{1}{3} \ln (1-\cos 3 x)  \tag{+c}\\ & =\lim _{a \rightarrow 0} \int_{a}^{\frac{\pi}{6}}\left(\frac{2}{3 x}-\frac{\sin 3 x}{1-\cos 3 x}\right) \mathrm{d} x \\ & =\lim _{a \rightarrow 0}\left[\frac{1}{3} \ln \frac{x^{2}}{1-\cos 3 x}\right]^{\pi / 6} \\ & (\mathrm{I}=) \frac{2}{3} \ln \frac{\pi}{6}-\frac{1}{3} \ln 1 \\ & \quad-\quad \lim \\ & \quad a \rightarrow 0\left[\frac{1}{3} \ln \frac{a^{2}}{1-\cos 3 a}\right] \end{align*}$ <br> Consider $\lim _{x \rightarrow 0}\left[\frac{x^{2}}{1-\cos 3 x}\right] \text { or with }\left[\frac{1-\cos 3 x}{x^{2}}\right]$ $\lim _{a \rightarrow 0}\left[\frac{a^{2}}{1-\cos 3 a}\right] \text { or with }\left[\frac{1-\cos 3 a}{a^{2}}\right]$ $=\frac{2}{9}\left(\text { or } \frac{9}{2} \text { if using } \lim _{x \rightarrow 0}\left[\frac{1-\cos 3 x}{x^{2}}\right]\right. \text { ) }$ $\text { (I=) } \frac{1}{3} \ln \frac{\pi^{2}}{36}-\frac{1}{3} \ln \frac{2}{9}=\frac{1}{3} \ln \frac{\pi^{2}}{8}$ | B1 | 8 | Correct integration of $\frac{2}{3 x}$ <br> Correct integration of $\frac{\sin 3 x}{1-\cos 3 x}$. Can be a correct OE in terms of $u$ if $u$ defined. <br> Evidence of limit 0 having been replaced by $a(\mathrm{OE})$ at any stage and $\lim _{a \rightarrow 0}$ seen or taken at any stage with no remaining lim relating to $\frac{\pi}{6}$. <br> Combining the relevant $\ln$ terms into a single ln term, ft after integration on one incorrect coeff of $\ln$ terms <br> $\mathrm{F}\left(\frac{\pi}{6}\right)-\mathrm{F}(a)$ taken at any stage <br> $\cos 3 x \approx 1-\frac{(3 x)^{2}}{2!}+.$. seen/used; or $\cos 3 a \approx 1-\frac{(3 a)^{2}}{2!}+.$. seen/used; or <br> L'Hopitals rule using either $x$ or ' $a$ ' to $\lim _{x \rightarrow 0}\left[\frac{x^{2}}{1-\cos 3 x}\right]=\lim _{x \rightarrow 0}\left[\frac{2}{9 \cos 3 x}\right]$ <br> or OE for the reciprocal <br> Correct value for the relevant limit. NB if combining with the other $\ln$ term, the value will appear as an expression involving $\pi$. Check the $2 / 9$ equivalent <br> CSO $\frac{1}{3} \ln \frac{\pi^{2}}{8}$ OE single term in exact form. |
|  | Total |  | 8 |  |
|  | $\frac{2}{3} \ln 3 x-\frac{1}{3} \ln (1-\cos 3 x) \text { B1B1 leads to eg } \frac{1}{3} \ln \frac{9 \pi^{2}}{36}-\frac{1}{3} \lim _{a \rightarrow 0}\left[\ln \frac{9 a^{2}}{1-\cos 3 a}\right] \text { etc }$ <br> $1^{\text {st }}$ M1, using $a$ for lower limit...if splitting the integral and using subst for the trig part of the integral eg $u=1-\cos 3 x$, and changing the limits, the lower limit must be linked to $1-\cos 3 a$ with $a \rightarrow 0$, otherwise M0. Note: For final cso mark, using series method, cos series must have at least 3 terms so that an $O\left(a^{2}\right)$ or $k a^{2}$ (OE) term must be present after division of top and bottom by $a^{2}$ |  |  |  |


| Q6 | Solution | Mark | Total | Comment |
| :---: | :---: | :---: | :---: | :---: |
| (a) | $\text { I.F. } \mathrm{e}^{\int 2(\mathrm{dx})}=\mathrm{e}^{2 x(+\mathrm{c})}$ | M1 A1 |  | Can be implied by a correct IF A correct IF |
|  | $\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{2 x}\right)=2(x-1)+4 \mathrm{e}^{2 x}$ | M1 |  | OE Both sides must be considered correctly |
|  | $y=\left(x^{2}-2 x\right) \mathrm{e}^{-2 x}+2+c \mathrm{e}^{-2 x}$ | A1 | 4 | OE but must be in the form $y=\mathrm{f}(x)$ eg $y=(x-1)^{2} \mathrm{e}^{-2 x}+2+k \mathrm{e}^{-2 x}$ |
| (b) | As $x \rightarrow \infty, x^{n} \mathrm{e}^{-2 x} \rightarrow 0$ $(\Rightarrow y \rightarrow 2) ;$ ie horizontal asymptote $y=2$ | E1 B1 | 2 | Must consider explicitly either in general terms or both $x \mathrm{e}^{-2 x}$ and $x^{2} \mathrm{e}^{-2 x}$ separately considered $y=2 \mathrm{OE}$ |
| (c) | $2+4 \mathrm{e}^{2}=3 \mathrm{e}^{2}+2+c \mathrm{e}^{2} \Rightarrow c=1$ | M1 |  | Sub $x=-1, y=2+4 \mathrm{e}^{2}$ in c's ans (a) as far as finding a value for the arbitrary constant |
|  | Eqn of $C: y=(x-1)^{2} \mathrm{e}^{-2 x}+2$ | A1 |  | ACF for the equation of $C$. Condone $y$ replaced by $k$ for this mark. |
|  | At st pt, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 2 y=2(x-1) \mathrm{e}^{-2 x}+4$ | M1 |  | Either equating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 in the given DE or differentiating $c$ 's eqn of curve using |
|  |  |  |  | product/quotient rule \& equating derivative to 0 |
|  | $(x-1)^{2} \mathrm{e}^{-2 x}+2=(x-1) \mathrm{e}^{-2 x}+2$ | A1 |  | A correct equation in $x$ |
|  | $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \mathrm{e}^{-2 x}-4(x-1) \mathrm{e}^{-2 x}$ |  |  | Dep on previous two M marks. Attempt to |
|  | When $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 \mathrm{e}^{-2}>0$ so min. <br> When $x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-2 \mathrm{e}^{-4}<0$ so max. | E1 |  | find the sign of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at each of the two stationary points or any other valid method to distinguish between maximum and minimum including a graphical approach |
|  | $y=k$ intersects $C$ in three distinct points $\Rightarrow \quad 2<k<2+\mathrm{e}^{-4}$ | B2,1,0 | 7 | B1 if one or both < replaced by $\leq$. |
|  | Total |  | 13 |  |
| (b) <br> (c) | As $x \rightarrow \infty, y \rightarrow 2$ so HA $y=2$ scores E0 B1; As $x \rightarrow \infty,\left(x^{2}+c\right) \mathrm{e}^{-2 x} \rightarrow 0, x \mathrm{e}^{-2 x} \rightarrow 0$ scores E1 Final two B marks, although unlikely, can be scored without any of the previous 5 marks scored |  |  |  |



